Deposition Technology: Electron Beam Evaporation

Electron beam (e-beam) evaporation involves heating the material by an electron beam as opposed to thermal evaporation which uses resistive heating (discussed in previous Blog). A typical e-beam evaporation system is shown schematically in Figure 1. E-beam heated sources have two major benefits:

  • Very high power density and as a result, a wide range of control over evaporation rates from very low to very high
  • Evaporant is contained in a water cooled Cu hearth, thus eliminating the problem of crucible contamination

While it will not be discussed in any detail, the two major types of e-beam sources (guns) are thermionic and plasma types (details of these guns can be found in reference 1). Deposition rate in this process can be as low as 1 nm/min to as high as a few μm/min. Material utilization efficiency is high relative compared to other PVD methods and the process offers structural and morphological control of films (discussed shortly). Due to the very high deposition rate, this process has been used in industrial applications for wear resistant and thermal barrier coatings in aerospace industries, hard coatings for cutting and tool industries, and electronic and optical films for semiconductor industries and thin film solar applications.

Note that one of the major problems with these processes is the low energy of the evaporated atoms, which can cause problems in the thin films such as poor adhesion to the substrate, reduced density, porous and columnar microstructure, increased moisture pick up and poor mechanical properties. This will be addressed in the next Blog.

Deposition of single elements by evaporation is straight forward. Deposition of alloys with two or more components, however, can be a challenge due to different vapor pressures and different evaporation rates. The solution to this problem is to use multiple sources, one for each constituent of the alloy. Additionally, the material evaporated from each source can be a metal, alloy or compound. Challenges of this process are calibrating deposition rates for each source, ensuring that the adatom beam from each source uniformly coincides with the beams from the other sources and that deposited atoms are sufficiently blended and obtaining uniform density of each material over the substrate surface.

Difficulties of direct evaporation to form oxides, nitrides, fluorides, carbides, etc. are due to fragmentation of vaporized compounds. Reactive evaporation can overcome many of these problems. Here metals are evaporated in the presence of reactive gas. A schematic of a typical reactive evaporation system is also shown in Figure 1. The problem here is that most oxides are substoichiometric due to the low energy of the evaporated adatoms and that deposition rates can suffer. In most cases stoichiometric films are deposited only as low deposition rates. Reaction kinetics (i.e., low energy of evaporated atoms/molecules) prohibit full oxidation or full reaction with the reactive species, which limits the potential applications of these films as optical coatings in particular. To this end, activated reactive evaporation (ARE) was developed [1,2]. This process generally involves evaporation of a metal or alloy in the presence of a plasma of a reactive gas, hence the term “activated”. For example, TiC and TiN coatings are deposited by evaporation Ti in a C2H2 or N2 plasma respectively. The plasma has the following roles:

  • Enhance reactions that are necessary for deposition of compound films
  • Modify growth kinetics and, as a result, structure/morphology of deposits

Applications for evaporated thin film coatings include:

  • Multilayer optical coatings
  • Metallization
  • Large area metal mirror coatings for telescopes
  • Metallization for roll coating
  • Decorative coatings
  • Hard coatings
  • Tribological coatings
  • Thin film solar cells
  • Diffusion barriers
  • Thermal barrier coatings
  • Organic thin films

Evaporation was one of the first processes used extensively for the deposition of thin films. This process enabled the use of thin films in a wide variety of applications, which lowered manufacturing costs and expanded functionality of bulk materials. Large area coverage was now possible. Evaporation and related processes are still used extensively to synthesize a wide variety of thin film coating materials.

A full range of evaporated optical coatings is being produced, including AR on glass and plastic, mirror coatings, beam splitters, filters, transparent conductive coatings, dichroic coatings, attenuation coatings and fiber optic coatings [3]. Coating of large areas, as well as high speed web coating, are possible with e-beam systems. Figure 2 shows the evaporated 8m Al Gemini telescope mirror coating. These have come a long way from the evaporated quartz/MgF2/cryolite/Al coatings in 1936 [4].

Reference:

  1. S Ismat et al., Chapter 4, Handbook of Deposition Technologies for Films and Coatings, Science, Applications and Technology, 3rd Ed., Peter M Martin Ed., Elsevier (2010).
  2. R F Buhshah & C Deshpandey, in Physics of Thin Films, J L Vossen and M H Francombe (Eds.), Academic Press (1987).
  3. See http://www.evaporatedcoatings.com/index.php?WTX=gaw.
    J Strong, J Opt Soc Am 26 (1936) 73.