Global AV & Advanced Driver Assistance Efforts Gain Momentum

Fully AVs (Autonomous Vehicles, a.k.a., Driverless Vehicles and ADS/ADAS advanced driver assistance systems) are still works in progress with different global proponents pushing competing technologies and strategies. Technical hurdles certainly remain as do legislative agendas to control the AVs or near-AV ADS vehicles already roaming some of the streets worldwide in tests.

Until AVs are around in large numbers, however, we will likely see more assisted driving ADS vehicles that require the driver to pay attention and intervene as needed per the vehicle’s rules. For ADS, some carmakers are looking at implementing head-up displays (HUDs) on the windshields, much like some military fighter and commercial aircraft pilots have had for some time. This permits critical information such as speed or warnings to be displayed without drivers taking their eyes off the roads and nearby traffic. Unlike military or commercial aircraft applications, HUD costs will certainly be major considerations in vehicles. Of course HUDs could evolve much like TVs where the old grainy pictures of the past have evolved into affordable HDTV and 4K HDTVs—incredible resolution at prices that keep dropping.

Caption: The NXP S32 Auto Processing Platform


NXP Semiconductors N.V., one of the world’s largest suppliers of automotive semiconductors, has a control and computer system for connected, electric and autonomous cars. The NXP S32 platform claims to be the world’s first fully-scalable automotive computing architecture. Soon to be adopted by some premium and volume automotive brands, it offers a unified architecture of microcontrollers/microprocessors (MCUs/MPUs) and an identical software environment across application platforms.

This system addresses the challenges of future car development with an architecture that allows carmakers to provide custom in-vehicle experiences while bringing automated driving functions to market much faster than before.

“Traditional and disruptive automakers, even more than Tier ones, seek a standardized way of working across vehicle domains, segments and regions to meet increasing performance demands while contemporarily ensuring fast time to market and control over skyrocketing development costs,” said Luca DeAmbroggi, senior principal analyst, Automotive Electronics & Semiconductors at IHS Markit in London. “A common architecture and a scalable approach can cut development time for critical applications in domains like ADAS, autonomous driving or connectivity from both the HW and the SW perspective.”

Vehicle Automation—AI Enabled

AI itself is getting much smarter as a recent MIT Technology Review news item explained. “AlphaGo Zero Shows Machines Can Become Superhuman Without Any Help. It explains that AlphaGo wasn’t the best Go player on the planet for very long. A new version of the masterful AI program has emerged, and it’s a monster. In a head-to-head matchup, AlphaGo Zero defeated the original program by 100 games to none.

“What’s really cool is how AlphaGo Zero did it. Whereas the original AlphaGo learned by ingesting data from hundreds of thousands of games played by human experts, AlphaGo Zero, also developed by the Alphabet subsidiary DeepMind, started with nothing but a blank board and the rules of the game. It learned simply by playing millions of games against itself, using what it learned in each game to improve.

“The new program represents a step forward in the quest to build machines that are truly intelligent. That’s because machines will need to figure out solutions to difficult problems even when there isn’t a large amount of training data to learn from,” per the Technology Review description.

Machines that are aware and learn are not new but this iteration is very impressive. Since AI and Machine Learning (ML) are essential for advanced AVs, this may accelerate their mastering the challenges and produce more road-worth systems soon.

Massive AV and AI Investments

What casual observers may fail to realize is just how many huge corporations are making multibillion dollar investments to get an early adopter advantage. Every major automaker needs AVs. All automakers worldwide are looking for what will work plus the tech firms that are hoping to lock in the next Windows, macOS/iOS, Linux OS or other competitive computer systems for these vehicles.

We may well see a mix of systems as we do with computers now but all must comply with driving rules and regulations—current and planned. There are certainly considerably different driving rules in various countries so one system may not work everywhere.

Large countries, China for instance, has terrible air pollution problems caused primarily by automobiles and power plants. China is really pushing photovoltaic solar panel production and implementation for several reasons: it is a clean non-polluting energy source and their manufacturing and installation expertise opens worldwide market opportunities.

China is making a big push towards electric vehicles (EVs) that will use photovoltaic recharging. If you are already going EV, why not use this transition as the ideal time to automate traffic flow and eliminate the problems of pollution, congestion, gridlock and accidents at the same time?

How serious is China about AI? The country has a development plan to become the world leader in AI by 2030, aiming to surpass its rivals technologically and build a domestic industry worth almost $150 billion.

Smart Connected Cars (SCCs)

NXP Semiconductors, Eindhoven, the Netherlands, and the China Ministry of Industry and Information Technology’s Subsidiary CAICT in Shenzhen recently signed a strategic cooperation agreement on Smart Connected Cars (SCCs). NXP was granted Official Pilot Company Status for Intelligent Transportation and Securely Connected Vehicles in China. CAICT is a subsidiary of China’s Ministry of Industry and Information Technology (MIIT) and the agreement will foster innovation in intelligent transportation and securely connected vehicles. CAICT was appointed by MIIT as project lead for the “Sino-German Intelligent Manufacturing Cooperation program” in 2016.

The CAICT-NXP partnership is focusing on strategic research and development, the development of standards, quality and testing, and talent exchange. It aims to advance China’s car industry with secure connectivity and infrastructure solutions, such as vehicle-to-vehicle and vehicle-to-infrastructure communications for smarter traffic.

The two parties will work on state-of-the-art networking technology and product development, while jointly promoting international standards across automotive applications such as information service terminals, vehicle-to-vehicle communications and vehicle-to-infrastructure communications and other automotive networking applications.

“Every year, 1.3 million people die in road accidents around the globe. The implementation of V2X and other intelligent transport systems will significantly reduce accidents, hours spent in traffic jams and CO2 emissions in China. However, safe and secure mobility can only come to life if there’s a commitment to collaboration. NXP is honored to be appointed as official collaboration company in the pilots, jointly working on this high-impact societal change. We look forward to supporting the transformation of the Chinese automobile industry by providing advanced secure connection and infrastructure solutions for a smarter life,” said Kurt Sievers, NXP Executive Vice President and General Manager of BU Automotive.

Next time: The AV discussion continues with some AI downsides.